121213509008

Code No. 8527 / CBCS/ Non-CBCS

FACULTY OF SCIENCE

M. Sc. I - Semester (CBCS / Non-CBCS) Examination, December 2013

Subject: Physics and Applied Electronics

Paper - II: Classical Mechanics

Time: 3 Hours

Max. Marks: 80

Note: Answer all questions from Part–A and Part–B. Each question carries 4 marks in Part–A and 12 marks in Part – B.

PART – A (8 x 4 = 32 Marks) (Short Answer Type)

- 1. Explain inertial and non-inertial frames.
- 2. Define four vector. Obtain the components of four velocity.
- State and explain principle of virtual work.
- 4. Comment on velocity dependent potentials.
- 5. Define Poisson brackets. Mention its properties.
- 6. What are ignorable coordinates? Explain.
- 7. Discuss on normal coordinates.
- 8. Write a short note on principal axis transformation.

PART – B (4 x 12 = 48 Marks) (Essay Answer Type)

9.(a) Explain how linear momentum and angular momentum will be conserved for a system of particles.

OR

- (b) Deduce Lorentz transformation equations in Miskowski space.
- 10.(a) Derive Lagrange's equations of motion form D'Almbert's principles.

OR

- (b) State and explain Hamilton's principle and obtain Lagrange's equations from it.
- 11.(a) Obtain Hamilton's canonical equations of motion and apply it to projectile motion of a body.

OR

- (b) State and prove principle of least action and discuss its consequences.
- 12.(a) Discuss on the normal frequencies of a vibrating string fixed at both ends.

OR

(b) Analyse free vibrations of a linear triatomic molecule.
