Code No. 8678

FACULTY OF SCIENCE

M.Sc. II-Semester Examination, May / June 2016

Subject: Mathematics / Applied Mathematics

Paper - II Advanced Real Analysis

Time: 3 hours

Max. Marks: 80

Note: Answer all questions from Part-A and Part-B. Each question carries 4 marks in Part-A and 12 marks in Part-B.

1 Prove that if $m^*(A)=0$ then $m^*(A \cup B) = m^*(B)$.

- 2 Prove that if f is a measurable function and f = g a.e. then g is measurable.
- 3 Show that if

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irratioal} \\ 1 & \text{if } x \text{ is rational} \end{cases}$$

then $R \int_a^{-b} f(x) dx = b - a$ and $R \int_{-a}^{b} f(x) dx = 0$.

4 Show that if f is integrable over E, then so is |f| and $|\int_{\mathbb{T}} f| \leq \int_{\mathbb{T}} |f|$.

5 Show that $D^+[-f(x)]=-D_+f(x)$.

- 6 Prove that every convergent sequence is a Cauchy sequence.
- 7 Consider the mapping $\bar{f} = (f_1 f_2)$ of IR^5 into IR^2 given by

$$f_1(x_1, x_2, y_1, y_2, y_3) = 2e^{x_1} + x^2y_1 - 4y_2 + 3.$$

 $f_2(x_1, x_2, y_1, y_2, y_3) = x_2 \cos^2 x_1 - 6x_1 + 2y_1 - y_3.$

If $\overline{a} = (0,1)$ and $\overline{b} = (3,2,7)$ then find the values of $\overline{f}(\overline{a},\overline{b})$.

8 Put f(0,0) = 0, and

$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2} \text{ if } (x, y) \neq (0, 0)$$

Show that D_{12} and D_{21} exist at every point of IR^2 , but that D_{12} $\neq D_{21}$ at (0, 0).

PART - B (4 x 12 = 48 Marks)

(Essay Answer Type)

- 9 a) i) Prove that the interval (a, ∞) is measurable.
 - ii) Let $\{En\}$ be an infinite decreasing sequence of measurable sets, that is, a sequence with $E_{n+1} \subset E_n$ for each n. Let $m(E_1)$ be finite. Then prove that

$$m\left(\bigcap_{i=1}^{\infty}E_{i}\right)=\lim_{n\to\infty}m\left(E_{n}\right).$$

OF

- b) i) Let f and g be two measurable real-valued functions defiend on the same domain. Then prove that f + g is also measurable.
 - ii) State and prove Littlewood's third principle.

10 a) i) Let f be a bounded function defined on [a, b]. If f is Riemann integrable on [a, b] then prove that it is measurable and

$$\mathcal{R} \int_a^b f(x) dx = \int_a^b f(x) dx.$$

Define integral of a nonnegative function. Prove that if f and g are nonnegative measurable functions then

$$\int_{E} (f + g) = \int_{E} f + \int_{E} g$$

Let f be a nonnegative function which is integrable over a set E. the prove b) i) that given $\epsilon > 0$ there is a $\delta > 0$ such that for every set $A \subset \mathbb{R}$ with m(A)< δ we have

- ii) Let {fn} be a sequence of measurable functions that converges in measure to f. Then prove that there is a subsequence $\{f_n\}$ that converges to f almost everywhere.
- 11 a) Let f be an increasing real-valued function on the interval [a, b]. Then prove that f differentiable and $\int_a^b f'(x)dx \le f(b) - f(a)$. is differentiable almost everywhere. Also prove that the derivative f' is

- b) Prove that p spaces are complete.
- 12 a) State and prove the rank theorem.

OR

b) i) Suppose f is defined in an open set set $E \subset IR^2$, and D_1f and $D_{21}f$ exist at every point of E. Suppose Q C E is a closed rectangle with sides parallel to the poordinate axes, having (a, b) and (a+h, b+k) as opposite vertices $(h \neq 0)$ k $\neq 0$). Put $\Delta(f,Q) = f(a+h,b+k) - f(a+h,b) - f(a,b+k) + f(a,b).$ Then prove that there is a point (x, y) in the interior of Q such that

$$\Delta(f,Q) = hk(D_{21}f)(x,y).$$

ii) Prove that $D_{21}f = D_{12}f$ if $f \in 6$ " (E).
