FACULTY OF SCIENCE

B.Sc. II-Semester (CBCS) Examination, May / June 2017

Subject: Mathematics

Paper - II: Differential Equations

Time: 3 Hours

Max. Marks: 80

$PART - A (5 \times 4 = 20 Marks)$ (Short Answer Type)

Note: Answer any FIVE of the following questions.

Show that the equation

$$xdx + ydy = \frac{a^2(xdy - ydx)}{x^2 + y^2}$$
 is exact.

2 Solve
$$\frac{dx}{x(y^2-z^2)} = \frac{dy}{y(z^2-x^2)} = \frac{dz}{z(x^2-y^2)}$$

3 Solve
$$\frac{d^3y}{dx^3} + y = e^{-x} + 1$$

4 Solve
$$(D^2 - 4)y = x^2$$

5 Find the particular integral of $\frac{d^2y}{dx^2} + y = \sec x$ by method of variation of

6 Solve
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = 2 \log x$$

7 Solve
$$pz - qz = (x + y)^2 + z^2$$

8 Solve
$$\sqrt{p} + \sqrt{q} = 1$$

9 (a) Solve
$$(xy^2 - x^2)dx + (3x^2y^2 + x^2y - 2x^3 + y^2)dy = 0$$

7 Solve pz – qz =
$$(x + y)^2 + z^2$$

8 Solve $\sqrt{p} + \sqrt{q} = 1$
PART – B (4 x 15 = 60 Marks)
(Essay Answer Type)
Note: Attempt ALL the questions.
9 (a) Solve $(xy^2 - x^2)dx + (3x^2y^2 + x^2y - 2x^3 + y^2)dy = 0$
OR
(b) Solve $y + px = x^4p^2$, $(p = \frac{dy}{dx})$.

10 (a) Solve
$$(D^2 - 4D + 4)y = 8(x^2 + e^{2x} + \sin 2x)$$
.

(b) Solve
$$(D^3+1)y = \cos 2x$$
.

11 (a) Solve $(D^2 + 4D + 4)y = 4x^2 + 6e^x$ by method of undertermined coefficients.

(b) Solve
$$x^4 \frac{d^3 y}{dx^3} + 2x^3 \frac{d^2 y}{dx^2} - x^2 \frac{dy}{dx} + xy = 1$$

12 (a) Solve
$$(x^2 - yz)p + (y^2-zx)q = z^2 - xy$$
.

(b) Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x,0) = 6e^{-3x}$ by the method of separation of variables.
